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OBJECTIVE—Phosphatidylinositol 3-OH kinase (PI3K) has a
long-recognized role in �-cell mass regulation and gene transcrip-
tion and is implicated in the modulation of insulin secretion. The
role of nontyrosine kinase receptor–activated PI3K isoforms is
largely unexplored. We therefore investigated the role of the
G-protein–coupled PI3K� and its catalytic subunit p110� in the
regulation of insulin granule recruitment and exocytosis.

RESEARCH DESIGN AND METHODS—The expression of
p110� was knocked down by small-interfering RNA, and p110�
activity was selectively inhibited with AS605240 (40 nmol/l).
Exocytosis and granule recruitment was monitored by islet
perifusion, whole-cell capacitance, total internal reflection fluo-
rescence microscopy, and electron microscopy in INS-1 and
human �-cells. Cortical F-actin was examined in INS-1 cells
and human islets and in mouse �-cells lacking the phosphatase
and tensin homolog (PTEN).

RESULTS—Knockdown or inhibition of p110� markedly
blunted depolarization-induced insulin secretion and exocytosis
and ablated the exocytotic response to direct Ca2� infusion. This
resulted from reduced granule localization to the plasma mem-
brane and was associated with increased cortical F-actin. Inhi-
bition of p110� had no effect on F-actin in �-cells lacking PTEN.
Finally, the effect of p110� inhibition on granule localization and
exocytosis could be rapidly reversed by agents that promote
actin depolymerization.

CONCLUSIONS—The G-protein–coupled PI3K� is an impor-
tant determinant of secretory granule trafficking to the plasma
membrane, at least in part through the negative regulation of
cortical F-actin. Thus, p110� activity plays an important role in
maintaining a membrane-docked, readily releasable pool of se-
cretory granules in insulinoma and human �-cells. Diabetes 58:

2084–2092, 2009

P
hosphatidylinositol 3-OH kinase (PI3K) signaling
has well-defined roles in the regulation of islet
gene transcription and mass; however, its func-
tion in regulating glucose-stimulated insulin

secretion remains a matter of debate. The use of nonse-
lective pharmacological inhibitors has suggested both
negative (1–3) and positive (4,5) roles for PI3K in insulin
secretion. While a negative role is supported by the
enhanced secretion seen following genetic downregula-
tion of PI3K (3), a positive role is indicated by reduced
insulin secretion following knockout of the insulin or
IGF-1 receptor (6,7) or insulin receptor substrate-1 (8). In
line with these observations, secretion is enhanced follow-
ing �-cell–specific ablation of the phosphatase and tensin
homolog (PTEN), which antagonizes PI3K signaling (9).

Type I PI3Ks catalyze the phosphorylation of
PtdIns(4,5)P2 to generate PtdIns(3,4,5)P3 (10). Receptor
tyrosine kinase–linked PI3Ks, which include the type 1A
catalytic subunits (p110�, -�, and -�), modulate ion chan-
nel activity, Ca2� signaling, and exocytosis (11–13). The
lone type 1B PI3K, containing the p110� catalytic subunit,
is activated by G-protein–coupled receptors (14), exhibits
basal lipid kinase activity (15), and regulates cardiac
contractility and inflammation (16). Activity of p110� has
been detected in insulinoma cells, where it is activated by
glucose-dependent insulinotropic polypeptide (GIP) (17).
Furthermore, we have demonstrated expression of this
isoform in mouse and human islets (18) and a lack of
first-phase insulin secretion in p110� knockout mice
(18,19).

We have now examined the mechanism by which p110�
regulates insulin exocytosis in INS-1 and mouse and
human �-cells. We find that this PI3K isoform regulates
�-cell Ca2�-dependent exocytosis by controlling the size of
the membrane-associated pool of secretory granules. Fur-
thermore, we identify a role for p110� in the modulation of
cortical F-actin density as a mechanism by which it can
regulate access of secretory granules to the plasma mem-
brane. Thus, we now show that p110� plays an important
role in maintaining the ability of �-cells to undergo a
robust secretory response following stimulation.

RESEARCH DESIGN AND METHODS

Cells and cell culture. INS-1 832/13 and 833/15 cells (20,21) (from Prof. C.
Newgard; Duke University) were transfected with Lipofectamine 2000 (In-
vitrogen, Carlsbad, CA), according to supplier instructions, and replated on
glass coverslips for total internal reflection fluorescence (TIRF) or 35-mm
culture dishes for patch clamp.

Islets from RIP-cre�/PTEN�/� and RIP-cre�/PTENfl/fl mice (9) and from
wild-type C57/bl6 mice were isolated by collagenase digestion followed by
hand picking. Human islets from 13 healthy donors were from the Clinical Islet
Laboratory at the University of Alberta. All studies were approved by the
animal care and use committee and the human research ethics board, as
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appropriate, at the University of Alberta. Islets were dispersed to single cells
by incubation for 11 min at 37°C in Ca2�-free dispersion buffer followed by
gentle trituration with a flame-polished glass pipette. Mouse islets and cells
were cultured in RPMI media with L-glutamine and supplemented with 10%
fetal bovine serum (FBS) and 100 units/ml penicillin/streptomycin. Human
islets and cells were cultured in low-glucose (1g/l) DMEM with L-glutamine,
110 mg/l sodium pyruvate, and supplemented with 10% FBS and 100 units/ml
penicillin/streptomycin.

Islet perifusion was performed using a Brandel SF-06 system (Gaithers-
burg, MD) following 2 h static preincubation in 5 mmol/l KCl Krebs-Ringer
bicarbonate (KRB) (in mmol/l: NaCl 115; KCl 5; NaHCO3 24; CaCl2 2.5; MgCl2
1; HEPES 10; 0.1% BSA, pH7.4; and 40 nmol/l AS605240 or DMSO alone).
Seventy-five human islets per lane were perifused at 0.25 ml/min. Solutions
were switched to 50 mmol/l KCl KRB (50 mmol/l KCl replaced an equivalent
amount of NaCl) as indicated. Perifusate was stored at �20°C and analyzed
for insulin via enzyme-linked immunosorbent assay (Alpco, Salem, NH).
DNA and adenovirus constructs. The p110� siRNA has been published
previously (19). A scrambled control sequence (GCTAAATAATCGGAT-
GATGT) was generated using Genscript (Piscataway, NJ) small-interfering
RNA (siRNA) target finder software, synthesized as a hairpin oligo with
BamHI and HindIII restriction sites on the 5� and 3� ends, respectively, and
ligated into the pRNAT-H1.1/shuttle vector (Clontech, Mountain View, CA).
For most experiments, these were transfected into INS-1 832/13 or human
�-cells by lipid transfection (Lipofectamine 2000), followed by 72 h of
culture. For some experiments (Fig. 1A and B), expression was via
recombinant adenovirus produced by transferring the expression cassettes
into the Adeno-X viral vector (Clontech) followed by adenovirus produc-
tion in HEK293 cells. HEK293 cell lysates were used to infect INS-1 832/13
cells for 5 h at a concentration previously determined for maximum
infection efficiency. Cells were then washed and cultured for an additional
72 h.

The VAMP-pHlourin construct was from Prof. G. Miesenboeck (University
of Oxford). The NPY-mCherry and islet amyloid polypeptide (IAPP)-mCherry
were created by ligating the mCherry sequence (Prof. R. Tsien, University of

California San Diego, CA) in place of the RFP of an NPY-RFP construct (Prof.
G. Rutter, Imperial College London, London, U.K.) or the emerald of an IAPP-
emerald construct (22).
Pharmacologic inhibition of p110�. 5-Quinoxilin-6-methylene-1,3-thiazoli-
dine-2,4-dione (AS605240; Merck Serono, Geneva, Switzerland) is an ATP-
competitive inhibitor of p110� (Ki � 8 nmol/l). Culture media was
supplemented with 40 nmol/l AS605240 in DMSO or an equal volume of DMSO
alone. This compound selectively targets p110� (Ki � 60 nmol/l, 270 nmol/l,
and 300 nmol/l for p110�, -�, and -�, respectively) and exhibits no notable
activity against a wide array of protein kinases at 1 	mol/l (23). Consistent
with a lack of effect on the type 1A PI3Ks, treatment of INS-1 832/13 cells
overnight with 40 nmol/l AS605240 did not block PI3K activation in response
to high K�, which activates type 1A PI3K through an autocrine insulin effect
(24). This was assessed by recruitment of the green fluorescent protein–
tagged PH domain of the general receptor for phosphoinositides (GFP-
GRP1PH) (25), where 25 mmol/l KCl elicited a 2.7 
 0.4–fold increase in
DMSO-treated cells (n � 11) and a 2.9 
 0.2–fold increase in AS605240-treated
cells (n � 9).
Immunoblotting. Lysates were subjected to SDS-PAGE and transferred to
polyvinylidene difluoride membranes (Millipore, Billerica, MA), probed with
primary antibodies (anti-p110�, anti-p110�, and anti–�-actin; Santa Cruz
Biotechnology, Santa Cruz, CA), detected with peroxidase-conjugated second-
ary anti-mouse or anti-rabbit antibodies (Santa Cruz Biotechnology), and
visualized by chemiluminescence (ECL-Plus; GE Healthcare, Mississauga,
Canada) and exposure to X-ray film (Fujifilm, Tokyo, Japan). Western blot
analysis of F- and G-actin was performed using the G-actin/F-actin In Vivo
Assay Kit (Cytoskeleton, Denver, CO). Densitometry was expressed relative to
total actin.
Electrophysiology. We used the standard whole-cell technique with the
sine�DC lockin function of an EPC10 amplifier and Patchmaster software
(HEKA Electronics, Lambrecht/Pfalz, Germany). Experiments were per-
formed at 32–35°C. Extracellular bath solution for depolarization trains
contained (in mmol/l) 118 NaCl, 20 TEA, 5.6 KCl, 1.2 MgCl2 � 6H2O, 2.6 CaCl2,
5 glucose, and 5 HEPES (pH 7.4 with NaOH). Pipette solution for depolariza-
tion trains contained (in mmol/l) 125 Cs-glutamate, 10 CsCl, 10 NaCl, 1 MgCl2
� 6H2O, 0.05 EGTA, 5 HEPES, and 3 MgATP (pH 7.15 with CsOH). The pipette
solution also contained 0.1 mmol/l cAMP or 10 	mol/l latrunculin, as indi-
cated. For Ca2� infusion experiments, the extracellular bath contained (in
mmol/l) 138 NaCl, 5.6 KCl, 1.2 MgCl2 � 6H2O, 2.6 CaCl2, 5 glucose, and 5 HEPES
(pH 7.4 with NaOH). Pipette solution for Ca2� infusion contained (in mmol/l)
125 K-glutamate, 10 NaCl, 10 KCl, 1 MgCl2 � 6H2O, 5 CaCl2, 10 EGTA, 5 HEPES,
and 3 MgATP (pH 7.1 with KOH) for 200 nmol/l free-Ca2�. Patch pipettes,
pulled from borosilicate glass and coated with Sylgard, had resistances of 3–4
megaohm (M�) when filled with pipette solution. Whole-cell capacitance
responses were normalized to initial cell size and expressed as femtofarad per
picofarad (fF/pF).
Microscopy. An Olympus IX71 inverted microscope with a PlanApo 100�
objective (NA 1.45; Olympus Canada, Markham, Canada) was used for TIRF
microscopy. Excitation was established with a 488-nm Argon laser and a
543-nm He-Ne laser (Melles Griot, Carlsbad, CA), passing through a laser
combiner, a single-mode optical fiber with laser coupler (458–633 nm), and an
IX2-RFAEVA-2 TIRFM illuminator (Olympus Canada). Emission was sepa-
rated with a GFP/RFP dichroic (Chroma, Rockingham, VT), filtered with a
GFP (520–535 nm) or RFP filter set (590–650 nm; Chroma), and projected
onto a back-illuminated Rolera-Mgi Plus EMCCD camera (Q Imaging, Surrey,
Canada) operated by InVivo version 3.2.0. (Media Cybernetics, Bethesda, MD).
For TIRF/patch-clamp experiments, cells were imaged (16.7 Hz) with a
Cascade II 512 EMCCD camera (Photometrics, Tucson, AZ), and cell capaci-
tance was recorded as above. For visualization of actin, cells were fixed with
Z-FIX (Anatech, Battle Creek, MI) and stained with Alexa Fluor 488–
conjugated phalloidin (Invitrogen).

For epifluorescence microscopy, cells were fixed and stained for actin as
above and positively identified as �-cells by immunostaining (rabbit anti-
insulin primary antibody, donkey anti-rabbit IgG secondary antibody conju-
gated to Texas Red; Santa Cruz Biotechnology). Cells were imaged with an
Olympus BX61 upright microscope and a 60� LumPlanFI objective (0.9 NA).
Excitation was with a DG4 light source with either a tetramethyl rhodamine
isothiocyanate or fluorescein isothiocyanate filter set (Semrock, Rochester,
NY). For clarity, only the green channel (F-actin staining) is shown (Fig. 6A).
Images were captured with a Retiga Exi CCD camera (Q Imaging) operated by
InVivo version 3.2.0 (Media Cybernetics).

For electron microscopy, cells were prefixed in 2.5% glutaraldehyde in
cacodylate buffer solution (pH 7.3) for 1.5 h at room temperature then washed
and post fixed with 1% osmium tetroxide in the same buffer for 1.5 h.
Following a wash in distilled water, the sample was dehydrated in a graded
series of ethanol solutions (50, 70, and 90% for 10 min each) before the final
two additional 10 min with absolute ethanol. Samples were then embedded in
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FIG. 1. Expression of p110� and effect of siRNA knockdown. A:
Expression of p110� was confirmed by Western blot of protein lysates
from human islets and INS-1 832/13 cells (left). Expression of p110�,
but not the related p110�, was reduced by an adenovirus-delivered
si-p110� construct in INS-1 832/13 cells (right). B: The average expres-
sion levels of p110� and p110� in the si-p110� INS-1 832/13 cells is
shown normalized to �-actin and expressed as a percentage of the
si-scramble control. C: Capacitance and Ca2� current recordings from
INS-1 832/13 cells expressing si-scramble (black lines) or si-p110�
(gray lines). D and E: The average capacitance response is shown,
normalized to cell size (D) and Ca2� current charge (E). **P < 0.01.
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Spurr’s resin and cured at 70°C for 10 h. Ultrathin sections were stained with
2% uranyl acetate for 30 min and lead citrate for 5 min. Micrographs were
taken at 75 Kv with a Hitachi transmission electron microscope H-7000
(Tokyo, Japan). All imaging data were analyzed with either ImageJ 1.38�
(National Institutes of Health) or Image Pro Plus version 6.2 (Media
Cybernetics).

RESULTS

PI3K catalytic subunit expression and knockdown in
insulin-secreting cells. Expression of p110� and -� was
confirmed in INS-1 832/13 cells and human islets by
Western blot (Fig. 1A) and RT-PCR (not shown), in agree-
ment with previous reports (18,19,26). Expression of an
siRNA construct targeted against p110� (si-p110�) (19) in
INS-1 832/13 cells reduced p110� expression by 78% (n �
3) compared with a scrambled siRNA (si-scrambled) con-
trol (Fig. 1A and B). Expression of the type 1A p110�
isoform, which can functionally compensate for p110�
(27), was not affected by the p110� siRNA (Fig. 1A and B).
PI3K� regulates insulin exocytosis. Whole-cell mem-
brane capacitance changes and voltage-dependent Ca2�

channel activity were monitored in INS-1 832/13 cells

expressing si-p110� or si-scrambled (Fig. 1). The capaci-
tance response to a 500-ms membrane depolarization was
decreased by 56% (P 
 0.01, n � 20 and 19) upon p110�
knockdown (Fig. 1C and D). The Ca2� current charge
during this depolarization was not different between
groups (�4.82 
 0.64 and �6.62 
 0.93 pC/pF; n � 20 and
18, NS). When normalized to Ca2� charge, the exocytotic
response was reduced 45% by knockdown of p110� (P 

0.01) (Fig. 1E).

We used membrane depolarization trains to further
assess the effect of p110� knockdown on exocytosis. The
total capacitance response was decreased by 45% upon
expression of si-p110� (n � 20 and 18, P 
 0.05) (Fig. 2A

and B). Notably, the response to the first two depolariza-
tions, considered to represent exocytosis of the readily
releasable granule pool (28), was markedly blunted (by
54%, P 
 0.01). A two-pulse analysis estimates a 60%
reduction in readily releasable pool size from 22.4 
 5.3 to
9.1 
 1.3 fF/pF (P 
 0.05).

Similarly, overnight inhibition of p110� with 40 nmol/l
AS605240 ablated the exocytotic response of human
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�-cells identified by positive insulin immunostaining (n �
18 cells from five donors, P 
 0.001) (Fig. 2C and D)
without affecting Ca2� currents (�0.61 
 0.13 vs. �0.69 

0.19 pC/pF, n � 15–18 cells from five donors). Consistent
with an impairment of insulin granule exocytosis, per se,
inhibition of p110� (40 nmol/l AS605240) in human islets
resulted in a 51% reduction in peak insulin secretion to
depolarization by 50 mmol/l KCl (n � 11 groups from four
donors, P 
 0.05) (Fig. 2E). Comparable results were also
obtained from mouse islets (not shown).

Direct infusion of Ca2� into the cell is often used as a
measure of the Ca2�-dependent recruitment of granules
and their subsequent exocytosis (28). The capacitance
response to infusion of 200 nmol/l free Ca2� was blunted
by expression of si-p110� in both INS-1 832/13 and human
�-cells (Fig. 2F–I). Upon knockdown of p110�, the exocy-
totic response at 30–60 s was ablated in the INS-1 832/13
cells (n � 8, P 
 0.01) and human �-cells (n � 7 cells from
two donors, P 
 0.05).

PI3K� regulates secretory granule recruitment to the
plasma membrane. We further examined the role of
p110� in insulin granule exocytosis by simultaneous TIRF
and whole-cell capacitance measurements. In INS-1 833/15
cells expressing the granule marker VAMP-pHluorin, the
capacitance response was abolished following p110� inhi-
bition (40 nmol/l AS605240) (Fig. 3A and B). Similarly, the
exocytotic event frequency measured by TIRF was re-
duced by 62% (n � 7, P 
 0.001) following inhibition of
p110� (Fig. 3C–E). Finally, after normalizing to the initial
granule density, inhibition of p110� was no longer seen to
blunt the exocytotic response (Fig. 3F), suggesting that the
impaired exocytosis was likely not due to a reduced
efficiency of Ca2�-stimulated exocytosis, per se.

We therefore examined the effect of p110� knockdown
on the density of membrane-associated insulin granules by
targeting mCherry to secretory granules using neuropep-
tide Y (NPY) (29). TIRF microscopy revealed that knock-
down of p110� results in a 38 and 41% reduction in
membrane-associated secretory granules in INS-1 832/13
cells (n � 15–16, P 
 0.001) and human �-cells (n � 29–30
cells from four donors, P 
 0.001), respectively (Fig. 4A
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ated granule density from the TIRF images, normalized to total mem-
brane area. C: Electron micrographs were obtained from INS-1 832/13
cells under control conditions (DMSO) or following inhibition of p110�
(40 nmol/l AS605240). D: The average number of granules per section
located < and >100 nm from the plasma membrane. *P < 0.05; **P <
0.01; ***P < 0.001.
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and B). This was confirmed by electron microscopy in
INS-1 832/13 cells (Fig. 4C and D), where inhibition of
p110� (40 nmol/l AS605240) reduced the number of secre-
tory granules near (
100 nm) the plasma membrane by
37% (n � 55–56, P 
 0.01). Inhibition of p110� was also
associated with an increased (P 
 0.05) number of gran-
ules at �100 nm from the plasma membrane (Fig. 4D) and
no change in overall granule density (not shown).
PI3K� regulates cortical F-actin density. Since corti-
cal actin network integrity is an important determining
factor in secretory granule recruitment and docking (30–
32), we studied the effect of p110� inhibition on cortical
filamentous (F)-actin in INS-1 832/13 cells, human islets,
and mouse �-cells. The cortical F-actin network in INS-1
832/13 cells, assessed by TIRF microscopy, was increased
after inhibition of p110� (40 nmol/l AS605240) (Fig. 5A).
This was associated with a 53% reduction in the density of
NPY-mCherry–labeled granules at the plasma membrane
(n � 20, P 
 0.01). Western blotting for purified F- and
total globular (G)-actin confirmed that F-actin, as a pro-
portion of total actin, was increased by p110� inhibition in
INS-1 832/13 cells (n � 3, P 
 0.05) and human islets (n �
3 donors, P 
 0.05) (Fig. 5B and C).

The PtdIns(3,4,5)P3 phosphatase activity of PTEN antag-
onizes PI3K signaling. We therefore examined the effect of
p110� inhibition (40 nmol/l AS605240) on F-actin in con-
trol mouse �-cells (RIP-cre�) and those lacking PTEN
(RIP-cre�/PTENfl/fl) (8). Cortical F-actin was visualized by
epifluorescence microscopy (Fig. 6A). Analysis by random
line scans (Fig. 6A, bottom) demonstrated that peak F-
actin staining was increased 1.7-fold (P 
 0.001, n �
10–11) by p110� inhibition in control �-cells but not in
�-cells lacking PTEN (n � 10–11) (Fig. 6).
Acute F-actin disruption restores vesicle docking and
exocytosis following PI3K� inhibition. Since the re-
duction in membrane-associated granules is associated
with increased cortical F-actin, we examined whether
disruption of F-actin could restore the membrane localiza-
tion of secretory granules and exocytosis following p110�
inhibition. Inhibition of p110� (40 nmol/l AS605240) in-
creased F-actin staining by twofold (n � 25–26, P 
 0.001)
(Fig. 7A and B). This was associated with a 37% (n �
25–26, P 
 0.001) reduction in membrane-associated se-
cretory granules, labeled in this experiment with a gran-
ule-targeted IAPP-mCherry construct.

As cAMP inhibits actin polymerization through protein
kinase A–dependent phosphorylation of monomeric actin
(33) and an indirect inhibition of the Rho family of
GTPases (rev. in 34,35), we examined whether increased
cAMP could reduce F-actin density and rescue granule
recruitment following p110� inhibition. Indeed, acute
treatment with the cAMP-raising agent forskolin (5
	mol/l, 10 min) reversed the effects of p110� inhibition
on cortical F-actin (n � 34, P 
 0.001) and membrane
granule density (n � 30, P 
 0.001) in the INS-1 832/13
cells (Fig. 7A and B).

Additionally, 10-min treatment with the actin depoly-
merizing agent latrunculin (10 	mol/l) reduced actin stain-
ing in both control (n � 28, P 
 0.001) and AS605240-
treated (n � 21, P 
 0.001) INS-1 832/13 cells (Fig. 7A and
B). This acute depolymerization of F-actin increased the
density of membrane-associated vesicles by 2.2-fold com-
pared with p110� inhibition alone (n � 16, P 
 0.001) (Fig.
7A and B). Thus, secretory granules remain present in the
cell following p110� inhibition and can reach the plasma
membrane upon disruption of the cortical actin barrier.

Finally, acute forskolin treatment (5 	mol/l, 10 min, n �
25) restored membrane-proximal granule density to con-
trol levels in INS-1 832/13 cells expressing si-p110� (P 

0.05) (Fig. 8A). Inclusion of cAMP (100 	mol/l) in the
patch-clamp pipette resulted in complete restoration of
exocytosis following p110� knockdown (n � 10) (Fig. 8B
and C). Similarly, the capacitance response of INS-1 832/13
(Fig. 8D and E) and human �-cells (Fig. 8F and G) to a
single 500-ms depolarization from �70 to 0 mV, which was
blunted in following p110� inhibition (n � 14–20, P 
 0.01
and n � 15–17 cells from five donors, P 
 0.001), could be
rapidly reversed by intracellular dialysis of either 100
	mol/l cAMP (INS-1, n � 14; human, n � 9 from five
donors) or 10 	mol/l latrunculin (INS-1, n � 9; human n �
12 from five donors). Thus, depolymerization of actin and
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restoration of the membrane-associated granule pool is
sufficient to rescue exocytosis following p110� inhibition.

DISCUSSION

Our previous work demonstrated that knockout of p110�
results in a blunted glucose-stimulated insulin response,
particularly during the first phase of secretion (18). We
have now examined the underlying mechanism for regu-
lation of insulin secretion by p110�. This PI3K isoform
positively regulates the size of the membrane-associated
pool of insulin granules, likely through the modulation of
cortical F-actin density. Therefore, we now identify a
previously undescribed role for PI3K� in the regulation of
cortical actin and targeting of insulin granules to the
plasma membrane in pancreatic �-cells.

The tyrosine kinase–activated isoforms of PI3K (type
1A) account for as much as 80% of islet PI3K activity (3).
The type 1B isoform, p110�, is expressed in insulinoma
cells, rodent islets, and human islets (18) (Fig. 1), where it
contributes a minor fraction of PI3K activity (17). The
nonselective nature of commonly used PI3K inhibitors
may account for earlier findings ascribing both negative
(1–3) and positive (4,5) roles to PI3K in insulin secretion.
Indeed, the various PI3Ks may play distinct roles in the
regulation of insulin secretion in an isoform-specific man-
ner. This is supported by the observation that while it
displays basal activity (15), p110� is glucose-independent
in INS-1 cells (17) and thus likely does not contribute to
increased PI3K activity following autocrine insulin feed-
back (24). This is consistent with our finding that p110�
inhibition did not blunt high K�-stimulated PtdIns(3,4,5)P3
formation (see RESEARCH DESIGN AND METHODS).

Consistent with the lack of first-phase secretion in the
p110� knockout mouse (18), we observed a reduction of
the early exocytotic response during membrane depolar-
ization in both INS-1 and human �-cells following p110�
knockdown or pharmacological inhibition. This was par-
alleled by a similar reduction in the peak insulin secretory
response to KCl following p110� inhibition in human
islets. Reduced exocytosis was not due to the inhibition of
voltage-dependent Ca2� channel activity, and defective
Ca2� stimulated exocytosis was also demonstrated in
response to direct Ca2� infusion following knockdown of
p110�. While the lack of exocytotic response to Ca2�

infusion during latter time points (i.e., 30–60 s) may be
indicative of a reduced Ca2�-induced granule recruitment,
since the readily releasable pool of granules is expected to

be already released (28), the exact role of p110� in
glucose- and Ca2�-dependent granule recruitment, per se,
remains unknown. Nonetheless, these results suggest a
reduction in the size of the readily releasable granule pool
and blunted refilling during prolonged Ca2� stimulation.

There was no increase, and often a net negative change,
in membrane capacitance in many experiments following
p110� inhibition. This was most noticeable following phar-
macological inhibition with AS605240, likely due to a more
complete inhibition of p110� compared with the siRNA
approach. The absence of a capacitance response is not
necessarily indicative of an absence of exocytosis, how-
ever, since this reports the net balance of exocytosis and
endocytosis. In the present context, since PtdIns(4,5)P2 is
an important regulator of endocytosis (36–38), a reduced
capacitance response may result from an increased Ca2�-
stimulated endocytosis (39). To address this, we simulta-
neously monitored exocytosis visually while measuring
whole-cell capacitance changes in INS-1 cells. In these
experiments, the exocytotic release of granule content
was indeed blunted following p110� inhibition (Fig. 3).

Reduced exocytosis can be explained either by an
inability of membrane-associated granules to undergo
exocytosis in response to a Ca2� stimulus or simply by a
lack of membrane-associated granules. While impaired
synaptic-like vesicle exocytosis may also contribute, the
present data clearly demonstrate a reduced membrane-
localized insulin granule pool by electron microscopy
analysis, consistent with our TIRF imaging. This is not
secondary to reduced insulin content since this is in-
creased in the p110� knockout mice (18) and following
p110� knockdown in INS-1 cells (18), whole-cell insulin
staining is increased in mouse �-cells following p110�
inhibition (not shown), and acute disruption of F-actin can
rapidly recover insulin granules at the plasma membrane
(Fig. 7).

The integrity of the cortical F-actin network is an
important determinant of granule recruitment to the
plasma membrane in chromaffin (30) and �-cells (31,32).
The cortical actin network can act as a physical barrier to
granule translocation (40) and can inhibit granule docking
through the direct occlusion of syntaxin 4 binding sites
(31). Indeed, decreased membrane-associated insulin
granule density following p110� inhibition is associated
with increased F-actin (Figs. 5–7). While we have not
examined the time course of F-actin changes, we have
observed that overnight inhibition of p110� is required to
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blunt the exocytotic response (not shown). We ascribe
this to the time necessary for the depletion of the mem-
brane-associated granule pool. Thus, the overall reduction
of membrane-associated granules following p110� inhibi-
tion is likely related to the rate at which preexisting
membrane-associated granules are either basally released
or internally recycled. A functional role for increased
F-actin density in the inhibition of granule trafficking to the
plasma membrane is demonstrated by the ability of actin

depolymerization to acutely restore granule targeting and
exocytosis (Fig. 7).

Only a minor fraction of the PI3K activity in insulin-
secreting cells is contributed by p110� (17), making it
difficult to determine the effect of p110� inhibition on
whole-cell phosphoinositide levels. A role for p110� lipid
kinase activity in the regulation of cortical F-actin density
is, however, indicated by the ability of the ATP-competi-
tive inhibitor AS605240 (23) to mimic the effect of p110�
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knockdown and the reversal of this by deletion of the
PtdIns(3,4,5)P3 phosphatase PTEN. The exact mechanism
by which p110� regulates cortical F-actin remains unclear,
as phosphoinositides are complex regulators of cytoskel-
etal rearrangement (41,42). It is interesting to note that the
Rho GTPases, such as Rac1 and Cdc42 that have important
roles in insulin secretion (43), also regulate actin and are
activated by the lipid products of PI3K (44–46). Addition-
ally, increased PtdIns(4,5)P2, which may be secondary to
p110� inhibition, could lead to actin assembly through the
dissociation of actin capping proteins (including gelsolin)
and/or activation of the WASP family proteins and the
Arp2/3 complex (47). Thus, several potential actin-regulat-
ing proteins may act downstream of p110�.

The p110� isoform exhibits significant basal lipid kinase
activity (15), and our results here suggest an important
role for this in �-cell function. While it is unlikely that
p110� is a key mediator of dynamic actin remodelling in
response to glucose since it is not activated upon glucose-
stimulation (17), a role in stimulated granule translocation
cannot be ruled out since this PI3K isoform can be
activated by the incretin hormone GIP in INS-1 cells (17).
Furthermore, insulin secretion from HIT-T15 cells stimu-
lated by GIP and the related VIP and PACAP peptides can
be significantly blunted by wortmannin independent of
cAMP generation, per se (4,5), similar to what we have
observed with forskolin and the direct infusion of cAMP.

In summary, we now demonstrate that the p110� iso-
form of PI3K is necessary for insulin granule recruitment
to the plasma membrane and maintenance of a membrane-
associated readily releasable pool of secretory granules in
model cell lines and in humans. This is mediated at least in
part through the regulation of cortical F-actin and repre-
sents a previously unknown function for a nonclassic PI3K
in the control of pancreatic �-cell function.
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